دانلود پروژه مقاله و گزارش کارآموزی و کارآفرینی

این وبلاگ با مساعدت دوستان عزیزم آماده کمک به شما عزیزان میباشد

دانلود پروژه مقاله و گزارش کارآموزی و کارآفرینی

این وبلاگ با مساعدت دوستان عزیزم آماده کمک به شما عزیزان میباشد

مقاله پلی کربنات ها

مقاله پلی کربنات ها

اطلاعات جدید و شرایط متفاوت بطور عملی شرایط زیست محیطی و ایمنی نیاز به روز رسانی فرآیند را بیشتر می‌کند. بیشتر مبانی طراحی و فرضیات مانند قبل است و در جدول 503 آورده شده است. عامل انتقال زنجیر عامل کنترل کننده جرم مولکولی نیز به جای قتل از ( پارا ترشیاری بیوتیل فنل) با نسبت مولی یکسان استفاده می‌شود.

عنوان : مقاله پلی کربنات ها

این فایل با فرمت word و آماده پرینت میباشد

فهرست مطالب

شرح فرآیند ۴

برآورد هزینه ها ۱۰

هزینه های اصلی ۱۰

۶- تولید پلی کربنات با واکنشهای تراکمی‌بین سطحی: ۱۲

مروی بر فرآیند ۱۲

شرح فرآیند ۱۵

برآورد هزینه ها ۱۸

۷- تولید پلی کربنات در فرآیند راکتور پیوسته: ۱۹

شرح فرآیند ۱۹

بر آورد هزینه ها ۲۴

هزینه های اولیه و اصلی ۲۴

هزینه های تولید ۲۴

۸- تولید پلی کربنات با فسژنه کردن محلول ناپیوسته ۲۵

شرح فرآیند ۲۷

برآورد هزینه ها ۲۸

هزینه های اولیه ۲۸

هزینه تولید ۲۹

۹- تولید پلی کربنات با ترنس استریفیکایسون و سایر فرایندای مذاب. ۲۹

شیمی‌فرآیند ۲۹

مروری بر فرآیند ۳۰

 

شرح فرآیند

جدولی از تجهیزات مورد نیاز در جدول 504 آورده شده است. این جدول سه عضو جدید را نسبت به طراحی های گذشته نشان می‌دهد. 1- تبخیر کنندة خوراک فسژن

2- واحد تصفیه و خالص سازی مجدد برای پلیمری که از محلول جدا شده است 3- یک تبخیر کنندة ضد حلال برای جدا سازی پلیمرهای با جرم مولکولی پایین.

فرآیند با اختلاط بیس فنل A و پرا ترشیاری فنل بطور نا پیوسته برای کنترل دقیق بر میزان پریدین و متیلن کلراید، شروع می‌شود. سپس مخلوط حاصل بعد از عبور از یک خنک کننده به داخل راکتورها پمپ می‌شود. (هفت راکتور همزن دار خنک شونده که بطور سری کار می‌کنند) فسژن تبخیر می‌شود سپس متراکم شده و پس از خنک شدن به داخل راکتورهای مختلف خوراک دهی می‌شود تا بهترین نتیجه حاصل شود.

مقادیر بیشتری از میتلن کلراید در مرحله مشخصی از واکنش برای کنترل ویسکوزیته به راکتور  اضافه می‌شود. به محلول پلیمری حاصل هیدرکلریک اسید اعمال شده سپس در یک جریان متداخل با آب بون زدایی شده در دستگاه سانتریفوژ مایع شسته می‌شود و سپس محلول صاف می‌شود. برای اطمینان از درصد پایین مونومزوپلیمرهای با جرم مولکولی پایین، پلیمر بصورت پودر در یک جریان متداخل رسوب گذاری بازیافت می‌شود. پلیمر با صاف کردن از مرحله دوم رسوب می‌کند و رسوب فیلتر می‌شود. لایه تشکیل شده روی فیلتر دوباره با ضد حلال شسته شده و دوباره صاف می‌شود. لایه جدا سازی شده در مرحله دوم صاف کردن، خشک شده و آلیاژ شده و پس از عبور از الکترو در خرد شده و بسته بندی می‌شود انتقال دهنده های با هوای خشک، و نگهدارنده های تراشه ها و ایستگاههای کیسه گیری و بسته بندی نیز آماده شده اند.

پریدین با شستشوی محلول با خنثی سازی بوسیلة قلیا که در صد بسیار (کم حلال را خارج می‌کند) و باز یافت می‌شود و سپس با رسیدن به نقطه آزئوتروپ محلول آب - پریدن متوقف می‌شود. محلول آزئوترو با اضافه کردن محلول غلیظ قلیاء تازه شکسته می‌شود و پریدین جدا می‌شود. از محلول رقیق قلیا برای خنثی سازی محلول شستشو همانگونه که توضیح داده شد، استفاده می‌شود. در صد بسیار کم آب باقی مانده و در پریدن به شکل آزئوتروپ 9 از طریق برج خشک کن، جدا می‌شود و پریدین مجدداً در فرآیند استفاده می‌شود.

بخشی از متیلن کلراید در مرحله اول جدا شده و پس از خشک کردن در جدا سازی دوباره مورد استفاده قرار می‌گیرد.

در طراحی های قبلی باقیمانده حلال و ضد حلال بطور مستقیم برای رسوب دادن بیشتر پلیمر، به فرایند بازگردانده می‌شود. این مایع شامل مقادیری از پلیمرهای با جرم مولکولی پایین و احتمالاً مونومر است و می‌تواند محصول را آلوده کند. در طراحی های جدید بخش جدا سازی مواد زائد اضافه شده است. اجزاء فرار پلیمرهای  با جرم مولکولی پایین با تبخیر توسط بخار آزاد در C -502 جدا می‌شود. محلول ضد حلال متراکم شده و به داخل جرج خشک کن C  -503 سرازیر شده تا در آنجا خشک شود. سپس برای شستشوی مرحله اول لایه جدا شده در فیلتر همانگونه که در بالا توضیح داده شد استفاده شود. مواد آلی از جریان آب بالایی بوسیله دستگاه تصفیه آب C   -504 جدا شده و این مواد آبی مجدداً به C  -503 برگردانده می‌شوند.

یک کوره به عنوان مجزاء با نام pac sol می‌تواند پلیمرهای با جرم کم، ‌ضایعات پلاستیکی و مایعات آبی را مانند سایر ضایعات جامد بسوزاند و به خاکستر تبدیل کند. این دستگاه از یک مشعل استوانه ای دوار است که بعد از آن محفظه ای برای تکمیل فرآیند سوختن وجود دارد. گاز های حاصل از احتراق سرد شده و در یک جذب کننده Ventargi برای جدا کردن ذرات معلق تنظیف شده و سپس با محلول بازی برای جدا کردن گازهای اسیدی مانند هیدروژن کلراید،‌ تماس می‌یابد.

آبی که قبلاً پس از جدا سازی از پریدین مستقیماً به داخل فاضلاب هدایت می‌شود اکنون قبل از ورود به فاضلاب با کربن فعال در جذب کننده c   -501 تماس پیدا می‌کند. عمر این جاذب بسیار بالا بوده و نیاز به تعویض آن وجود ندارد

هوایی که از خشک کن M-402 و فیلترهای S-403-4 می‌آیند، حاوی حلال ضد حلال می‌باشند و این مواد د جاذب کربن فعال C -506,505 جدا می‌شوند که این جانب بطور جایگزین کاری می‌کنند که در زمان غیر فعال بودن توسط بخار آب مجدداً تمیز میشوند.

مواد آلی جدا شده به بخش بازیافت حلال برگردانده می‌شوند. 

خلاصه محصولات زاید در جدول 505 آورده شده است.

جریانهای مواد زاید نشان داده شده آنهایی هستند که در حال کارکرد عادی فرایند اهمیت دارند. علاوه بر مقادیر نشان داده شده نشست مایعات از طریق پمپها و سایر تجهیزات وجود دارد. همچنین نشست بخارات از طریق پر و خالی شدن مخازن و سایر شرایط نیز وجود دارد. مقادیر بیشتری از آب با شستشوی محل فرآیند به فاضلاب اضافه می‌شود. همچنین مقادیر زیادی تخلیه در اثر اشتباهات کاربری عملکرد شیرهای اطمینان تخلیه و شستشوی تجهیزات در حین توقف های فرآیند، و شرایط مشابه می‌تواند رخ دهند.

بحث در مورد فرآیند:

دلیل اینکه C _E فسژن را بصورت بخار به داخل فرایند وارد می‌کند می‌تواند به خاطر تاثیرات جدی مقادیر بسیار کم فلزات بر کیفیت محصول می‌باشد.

فسژن خشک خورنده نمی‌باشد اما آب آنرا به شدت خورنده می‌کند پس ایجاد شرایط برای جدا سازی مقادیر بسیار کم فلزات، غیر منطقی به نظر می‌رسد. همچنین انتخاب مواد برای سازه ها با در نظر گرفتن این عامل تصحیح شده است. جلوگیری از این آلودگی می‌تواند با  استفاده از راکتورها و مخازنی که با شیشه پوشش داده شده اند انجام بگیرد. شیشه برای قلیا مناسب نیست و نیکل ( ماده ای که برای مواردی که تماس با قلیا وجود دارد ترجیح داده می‌شود) هم یکی از نامطلوبترین آلوده کننده ها می‌باشد. نیکل می‌تواند برای ساخت برخی از برجهای بازیافت پیریدین استفاده شود. با این وجود بدلیل خوردگی محصولات همراه با فاضلاب خواهند بود.

نیتانیم از دیدگاه تکنیکی می‌تواند به عنوان یکی از بهترین مواد جایگزین مطرح باشد.  اما این ماده گرانقیمت است قیمت صفحات نیتانیم ده دلار برای هر پوند و برای صفحاتی که نیتانیم بر روی فولاد چسبانده شده است شش دلار بر پوند است که کمترین ضخامت فولاد 16/11 اینچ می‌باشد. اگر فشار طراحی ضخامت را کنترل کند، وزن مخزن نیتانیم تقریباً با وزن مخزن فولادی یکسان می‌شود. در مدلهای حرارتی لوله های نیتانیم هزینه ای برابر با لوله های نیکلی دارند.

تجهیزاتی که با شیشه روکش شده اند در بیشتر قسمتی این طراحی انتخاب بهتری هستند. با این وجود بوجود آمدن سوراخهای کوچک در این پوشش شیشه می‌تواند باعث مسأله خوردگی در زمان سرویس دهی بشود، آلودگی ایجاد شده در محصول نهایی در اثر این عامل نباید خیلی جدی باشد. دستگاههای سانتریفوژ مایع معمولاً از فولاد ضد زنگ فسیل داده شده یافته می‌شوند. تماس کوتاه در این تجهیزات مانعی ندارد. برای نگهداری یونهای فلزی در فاز مایع باید از یک عامل (Chelatia) استفاده کرد در برخی سرویس دهی ها، استفاده از فولاد ضد زنگ علی رقم وجود نیکل در آن به فولاد کربنی ترجیح داده می‌شود زیرا مقاومت کلی آن در برابر خوردگی بیشتر است. همچنین استفاده از فولاد ضد زنگ می‌تواند از خوردگی در هنگامی‌که تجهیزات خاموش شده و تمیز می‌شوند، جلوگیری کنند. سازمان FDA در ایالات متحدة آمریکا اخیراً نگرانی بیشتری نسبت به مهاجرت پلیمرهای با وزن مولکولی کم ومونومر به داخل مواد خوراکی در حین تماس با آنها ابرازی می‌کند. علاوه بر این اجزاء چسبنده در مایعات در گردش می‌تواند فرآیند را مشکل کند به همین دلیل در این طراحی مایعات تبخیر شده تا پلیمرهای با جرم مولکولی کم جدا شدند و مایعات تقسیم شده و برای جدا سازی موثر مواد رسوب نکرده ای که می‌تواند پلیمر نهایی را آلوده کند مورد استفاده قرار گیرد. این عمل با شستشوی لایه تشکیل شده روی صافی مرحله اول بوسیله مایعات تمیز تصفیه شده صورت می‌گیرد.

علاوه بر جدا سازی مونور و مواد با جرم مولکولی پایین، پریدین و هیدرو کلراید آن باید بطور کامل از پلیمر جدا سازی شود، این اجزاء با شستشو با آب جدا می‌شنود. جداسازی مونومرو پلیمرهای با جرم کم، باعث ایجاد محلول صاف شده ای می‌شود که باید فرآیند شود. همچنین تبخیر اجزاء فرار باعث می‌شود که پلیمر به حالت بسیار ویسکوز و شاید چسبنده برسد. در این طراحی بخار برای جلوگیری از بسته شدن سطوح انتقال حرارت استفاده می‌شود. به هم زدن شدید با استفاده از بخار باعث می‌شود که الیگومر ها بصورت دوغابی در آب میعان یافته جدا شوند. اگر نیاز باشد می‌توان از حلالهای پلیمر با دمای جوش بالا استفاده کرد. اگر گرفتگی در سیستم رخ دهد می‌توان با عبور دادن حلال از سیستم این ذرات را تمیز کرد.

طراحی شامل تجهیزاتی برای خشک کردن مواد فرآیند نیز می‌باشد. امکان دارد بیس فنل A نیاز به خشک کردن داشته باشد. 

این ماده برای جلوگیری از خطر انفجار این ماده همراه با گاز خنثی حمل می‌شود. رطوبت موجود در بین فنل A هر چند موجب جلوگیری از واکنش مطلوب می‌شود اما می‌تواند باعث رفتن مقادیری از فسژن شود.

نقش پریدین علاوه بر آنکه یک ماده جذب کنندة ایسه است، حلال بیس فنل A نیز می‌باشد. متیلن کلراید پلیمر را در خود حل می‌کند اما موتومردر آن حل نمی‌شود. این توانایی انحلال پذیری متضاد بیس فنل A و پلیمر از آنجا ناشی می‌شود که بیس فنل A  یک دهنده، پروتن است درحالی که پلیمر حاصل الکترون دهنده می‌باشد. GE به جای نوکیس پیریدین، از آهک به عنوان جاذب اسید استفاده می‌کند. به همین دلیل جدا کردن پلیمر از بیس فنل A ساده است. مشخص شده است که حلال کمتر از 2 درصد وزنی ار بیس فنل A را در خود حل می‌کند. با وجود آنکه جذب اسید توسط آهک واضح نیست اما این روش در صنعت مورد استفاده قرار می‌گیرد.

برآورد هزینه ها

هزینه های اصلی:

هزینه های بنیادی واحدی که قابلیت تولید 20 میلیون پوند بر سال از پلی کربنات مورد استفاده در فرآیند قالبگیری ترزیق در جدول 5.6 نشان داده شده است. بدلیل تصحیحات زیادی که در اثر اطلاعات جدید و ملاحظات زیست محیطی و ایمنی بوجود می‌آید، این بر آورد هزینه با برآوردهای قبلی متفاوت است. هزینه اولیه تثبیت شده 10 .8 میلیون دلار است. هزینه کل با در نظر گرفتن هزینه زمین مورد استفاده   16 .7 میلیون دلار می‌باشد. ( 83 سنت برای هر پوند) ریز هزینه های اصلی بخش فرایند در جدول  5 .4 نشان داده شده است. برآوردهای قابل مقایسه ای منتشر نشده است. GE گزارش کرده است که زمانی که تولید واحد صنعتی  Mt.vernon به 150 میلیون پوند بر سال رسید، هزینه کلا پروژه 75 میلیون دلار بود( 50 سنت برای هر پوند) با در نظر گرفتن میانگین هزینه هایی که در مورد پروژه های مختلف به ثبت رسیده و ضریب عملکرد    9.9 می‌توان  به هزینة سرانة 90 سنت به ازاء هر پوند برای کل هزینه 29 میلیون دلار رسید. اما گزارش در رابطه با صورت هزینه های جزئی فرایند منتشر نشده است.

برخی از گرانترین اجزاء فرآیند در بخش تجهیزات ویژه اصلی قرار دارند عبارتند از دستگاه سانتریفوژ ( 170000 دلار) در بخش تولید پلیمر و اکسترودر ( 277000دلار) در بخش تولید گرانول هزینه های تولید

هزینه های تولید در جدول   5.8 برای کل فرآیند و در جدول  5.9 برای بخشهای فرآیند برآورد شده اند، هزینه کلی 68 سنت به ازاء هر پوند با در نظر گرفتن 10% هزینه افت سرمایه محاسبه شده است اگر میزان 30% را به عنوان بازگشت سرمایه گذاری اولیه به قمیت تمام شده اضافه کنیم به مبلغ 85 سنت به ازاء هر پوند می‌رسیم.

هزینة سراند تولید به شدت به قیمت مواد اولیه وابسته است ( بطور دقیق تر بیس فنل A )عواملی کلی  G,A و فروش و هزینه های تحقیقاتی نیز اهمیت دارند، تغییرات هزینه تولید با ظرفیت واحد و سرعت تولید در شکل  5.1 نشان داده شده است.

6- تولید پلی کربنات با واکنشهای تراکمی‌بین سطحی:

شیمی‌واکنش: اطلاعات کمی‌از زمان طرح قبلی تولید پلی کربنات به این روش ( سال 1962) منتشر شده است. میزان انحلال پذیری بیس فنل A در محلول هیدروکسید سدیم در محلول حاوی 6 درصد وزنی از هیدروکسید سدیم حداکثر است. انحلال پذیری بیس فنل A با افزایش دما از مقدار 0.15 گرم به ازاء هر گرم هیدروکسید سدیم در دمای صفر درجة سانتی گراد افزایش می‌یابد. این تفکر مرجع باعث طراحی یک واکنش نا پیوسته دو مرحله ای می‌شود. مرحله اول شامل فسژنه کردن و مرحله دوم پلیمریزاسیون تراکمی‌با وجود اینکه بطور واضح توضیح داده نشده است، اما مرحله دوم شامل اختلاط در حضور کاتالیست بدون افزودن فسژن اضافی انجام می‌شود. مقدار مصرف کلی پارا- تراشیاری  بوتیل فنل به ازاء واحد بیس فنل A کنترل کننده نهایی جرم مولکولی است. فنل با سرعت کمتری نسبت به پاراترشیاری بوتیل فنل واکنش  می‌دهد. کربنات سدیم در اثر هیدرولیز فسژن بوجود می‌آید واکنش جانبی با اختلاط موثر و با حضور کاتالیست در مرحله فشرنه کردن می‌تواند کاهش یابد. آزمایشات روند تغییرات جرم مولکولی را بر حسب زمان و افزودن کاتالیست مشخص کرده است

دانلود کامل مقاله پلی کربنات ها

نفت خام

نفت خام

مقدمه

نفت خام مایعی است که از تعدادی هیدروکربن و مقداری ترکییات گوگردی اکسیژن دار، ازته و مقدار کمی ترکیبات معدنی و فلزات تشکیل شده است . ترکیبات مختلف نفت خام بنا به موقعیت محلی میدان نفتی و زمان تشکیل آن و حتی بنا به ژرفای منبع مـتغیرند . 

در یک جزوه نفتی همراه نفت خام همواره مقداری گاز ، آب و نمک و شن و ماسه وجود دارد که این مواد بر اساس چگالی روی هم انباشته می گردند . نحوة قرار گرفتن آنها بدین شکل است که در زیر یک لایة غیر قابل نفوذ ابتدا آب و نمک ، سپس نفت خان .و بر روی آن گازها قرار دارند .

                                               موضوع:نفت خام

این فایل یا فرمت ورد و آماده پرینت می باشد

فهرست:

مقدمه

واحد ارزیابی نفت خام

چگالی ( دانسیته )‌

مقایسه دانسیته هیدروکربتهای مختلف در درجه حرارت ثابت

روش ASTM

پشرح آزمایش

فشار بخار رد (RVP)

دستگاه اندازه گیری RVP

نقطه اشتعال ـ نقطه آتش گیری

محاسبه

کربن باقیمانده پس از سوختن

کندراتسون روش ASTM D189

رمزباتوم

ASTM D524

نقطة دود

روش

نقطه ریزش

روش ASTM D97

نقطه انجماد

پترکیبات گوگرد دار

تعیین مقدار گوگرد در فرآوردهای نفتی : روش ASTM D 262

تعیین مرکاپتان روشن uop 163

اسیدیته : روش ASTM D 664

ویسکوزیته

عدد اکتان

عددستان

عدد دیزل

اندازه گیری نمک در نفت خام

روش 3230 ASTM

محاسبه

اندازه گیری آسفالتین

روش IP

اندازه گیری واکس ( موم )

بررسی و تجزیه مواد نفتی از نظر تقطیر

نفت خام پس از استخراج به واحد بهره برداری انتقال داده شده که در این واحد  نفت خام را با عبور از جدا کننده ها و کاهش تدریجی فشار ، از گاز همراه با آن عاری می سازند . سپس در واحد نمک زدایی ، آب و نمک ، شن و ماسة آن را جدا ساخته و در صورت ترش بودن نفت خام ( حاوی گازهای اسیدی مانند   ،   ، RSH و …. ) آن را در استریپرها    با یک گازشیرین تماس داده و   را جدا می کند کلیة این اعمال بر ای جلوگیری از خوردگی تجهیزات پالایش می باشد. 

طراحی پالایشگاه را بر اساس اجزاء تشکیل دهنده نفت خام مورد استفاده صورت می گیرد . در ضمن با افزایش مدت زمان استخراج از یک حوزة نفتی کیفیت نفت تغییر کرده و به طور معمول مقدار گوگود و   آن افزایش می یابد . در نتیجه با تغییر خوراک پالایشگاه نیاز است که شرایط عملیاتی تغییر کند که این تغییرات بر اساس نتایج حاصل از ارزیابی نفت خام صورت می گیرد. 

2 ـ واحد ارزیابی نفت خام 

هدف از انجام کلیه آرمایشات در واحد ارزیابی نفت خام ، ارزیابی و تعیین مشخصات نقت خام های ایران و کشورهای همسایه که برای امور صادرات و طراحی پالایشگاهها مورد استفاده قرار می گیرد ، است .

از جمله کارهای این واحد ، تقطیر نفت خام و بدست آوردن فرآورده های سبک تا سنگین که به ترتیب حلالها و بنزین و نفت سفید و گازوئیل و روغنها می باشند که مشخصات فیزیکی و شیمیایی و ترمودینامیکی آنها مطابق روشهای استاندارد انجام می شود و همچنین حلالهای نفتی مورد نیاز صنایع در این واحد ساخته می شود. 

تواناییهای این واحد علاوه بر موارد فوق در خصوص قسمتهای استاندارد به شرح زیر می باشد: 

1. تقطیرهای ASTM و IP جهت تهیة برشهای کوتاه و تعیین نقاط جوش و تحت خلاء تا 001/0 میلی باد و تا نفاط جوش حدود  800 .

2. تعیین دانسیته ، وزن مخصوص ، گوگرد ، اسیدیته و گرانروی مایعات ، گازها و جامدات.

3. تعیین مقدار هیدروکربنتهای آروماتیکی ، نفتینکی، الفینی و پارافینی ( نرمال رایزو)

4. تعیین وزن مولکولی ،‌ فشار بخار ، باقیمانده ، کربن ، مقدار واکس و نقطة ذوب آن و خاکستر در نفت خام و فرآوردها 

5. تعیین مقدار نمک، آب و رسوبات در نفت خام .

6. تعیین اندازه ذرات جامد معلق در مایعات و غلظت آنها.

7. تعیین ضریب رسانش ، PH‌ ، ارزش حرارتی ، مقاومت اکسیداسیون مایعات . 

8. تصفیه روغن های خام و تعیین پارامترهای کنترل کیفیت بخصوص اندیس گرانروی ، قسمت رنگ فرآورده ها و نمرة برومین .

9. تعیین عددستان ، اندیش دیزل ، نقطة آنیلین ، نقطة آتش گیری ،‌ نقطة اشتعال ، نقطة ابری شدن ، نقطه انجماد ، نقطة ریزش و دمای بسته شدن فیلتر گازوئیل بر روی سوختهای نفت سفید و دیزل.

10. تست نوار خوردگی مس ، نقره ، خوردگی فلزات بر روی سوختها و ضدیخ.

معمولاً هر پالایشگاه دارای یک آزمایشگاه کنترل کیفیت است که در آنها آزمایشهایی بر روی فرآورده های مختلف میانی یا نهایی به دو منظور انجام می شود:

• تشخیص صحت کار واحدهای تولید به طور سریع 

• اطمینان از مطابقت فرآورده های نهایی با استانداردهای مربرطه 

برای انجام این آزمایشها ، دستگاهها و روشهای استاندارد بکار می رود . بطوریکه نتایج به راحتی قابل تکرار و مقایسه باشند . عمدتاً از روشهای ASTM و در مواردی IP ، BP ، DIM و …. استفاده می شود. 

در این گزارش به برخی از مهمترین آزمایشها اشاره می شود.

چگالی ( دانسیته )‌

دانسیته هیدروکربن ها همیشه کمتر از یک است و با افزایش تعداد کربن ، این مقدار در یک سری همولوگ افزایش می یابد . در صورتی که سیستم ها به ترتیب هیدورکربن های اشباع شدة غیر حلقوی ـ اشباع شده حلقوی ـ و آروماتیک باشد . به ازاء تعداد معین کربن دانسیته نیز افزایش می یابد.

مقایسه دانسیته هیدروکربتهای مختلف در درجه حرارت ثابت 

دانسیته نفت که مخلوطی از هیدروکربن ها ست بستگی به مواد سازنده آن دارد و به همین لحاظ است که نفت کشورهای مختلف دارای دانسته های متفاوت است . . مثلاً دانسیته نفت آمریکا . 87/0 ـ 800/0 ، نفت ایران در   60 ، 836/0 و نفت و رسید 900/0 ـ 850/0 می باشد

دانلود کامل نفت خام

سوخت هسته ای و فرایندآن

سوخت هسته ای و فرایندآن

پسماندهای هسته‌ای

]علی رغم سابقه به وضوح ایمن در طول نیم قرن گذشته، امروزه یکی از بحث برانگیزترین جنبه های چرخه سوخت هسته ای مسئله مدیریت و دفع پسماندهای پرتوز است[.

P1 مشکل ترین مسئله، پسماندهای سطح بالا هستند، و دو سیاست مختلف برای مدیریت آنها وجود دارد:

•    بازفرآوری سوخت مصرف شده برای جدا کردن آنها (که با شیشه ای کردن و دفع کردن آنها ادامه می یابد) یا

•    دفع مستقیم سوخت مصرف شده دارای پرتوزایی سطح بالا به صورت پسماند.

]پسماندهای هسته ای اصلی در سوخت راکتور سفالی محفوظ باقی می مانند[.

P2 همانطور که در فصل‌های 3و4 به طور خلاصه گفته شد، “سوزاندن” سوخت در قلب راکتور محصولات شکافتی تولید می کند به مانند ایزوتوپ های مختلف باریم، استرونسیم، نریم، ید، کریپتون و گرنون (Ba، Sr، Cs، I، Kr، Xe). بیشترین ایزوتوپ‌های شکل گرفته به صورت محصولات شکافت در سوخت به شدت پرتوزا هستند و متعاقباً عمرشان کوتاه است.

P3 علاوه بر این اتم های کوچکتر به وجود آمده از شکافت سوخت، ایزوتوپ‌های ترااورانومی مختلفی هم با جذب نوترون تشکیل می شوند. از جمله اینها پلوتونیوم- 239، پلوتونیوم- 240 و پلوتونیوم- 241 ، به علاوه محصولات دیگری هستند که از جذب نوترون توسط u-2381 در قلب راکتور و سپس تلاشی بتا به عمل می آیند. همه اینها پرتوزا هستند و به غیر از پلوتونیوم شکافت پذیر که “می‌سوزد”، در سوخت مصرف شده ای که از راکتور برداشته می شود باقی می مانند. ایزوتوپ های ترا اورانیوم و دیگر اکتنیدها  بیشترین قسمت از پسماندهای سطح بالای با طول عمر زیاد را شکل می دهند.

P4 در حالی که چرخه سوخت هسته ای صلح آمیز، پسماندهای مختلفی تولید می‌کند، این پسماندها “آلودگی” به شمار نمی آیند، زیرا در عمل همه آنها نگهداری و مدیریت می شوند، در غیر این صورت است که خطرناک خواهند بود. در حقیقت توان هسته ای تنها صنعت تولید انرژی است که مسئولیت کامل همه پسماندهایش را برعهده گرفته و هزینه آن را به طور کامل بر قیمت تولیداتش اضافه می کند. وانگهی هم اکنون مهارت های به دست آمده در مدیریت پسماندهای غیر نظامی در حال شروع به اعمال شدن به پسماندهای نظامی است که یک مشکل محیط زیستی جدی در چند نقطه جهان ایجاد کرده است.

موضوع:سوخت هسته ای و فرایندآن

فهرست

پسماندهای هسته‌ای

پسماند سطح بالا

پسماندهای سطح متوسط

بازفرآوری سوخت مصرف شده

پسماندهای سطح بالای مربوط به بازفرآوری‌

انبار و دفع سوخت مصرف شده به عنوان “پسماند”

دفع پسماندهای جامد

یک همسان طبیعی: oklo

هزینه

راکتورهای از کار انداخته شده

پیاده کردن بی فاصله

حصار ایمن (یا Safestor)

دفن

مثال ها

هزینه ها

پیش پرداخت

سرمایه گذاری خارجی (وضع مالیات بر توان هسته ای):

حساب تضمینی، اعتبار اسنادی، یا بیمه

هزینه های خارجی- پیامدهای زیست محیطی، بهداشتی و امنیتی

اثرات زیست محیطی

گرمای هدر رفته

اکسیدهای نیتروژن

اثر گل خانه ای

اثرات بهداشتی و پرتوها

اثرات بهداشت محیطی

توجیه

بهینه سازی

محدودیت

سطح احتمال خطر فردی

پلوتونیوم

اثرات ژنتیکی

ایمنی راکتور

پسماندهای هسته‌ای

پسماندهای پرتوزا مواد گوناگونی را شامل می شوند که از جهت محافظت مردم و محیط زیست اقدامات متفاوتی را طلب می کنند. مدیریت و دفع آنها از نظر فن آوری سر راست است[.

P5 این پسماندها براساس مقدار و نوع پرتوزایی موجود در آنها معمولاً به سه دسته تحت عنوان های پسماندهای سطح پایین سطح متوسط و سطح بالا دسته بندی می‌شوند.

P6 عامل دیگر در مدیریت پسماندها مدت زمانی است که آنها ممکن است خطرناک باقی بمانند. این زمان به نوع ایزوتوپ های پرتوزای موجود در آنها و به خصوص مشخصه نیمه عمر هر یک از این ایزوتوپ ها بستگی دارد. نیمه عمر مدت زمانی است که طی می شود تا یک ایزوتوپ پرتوزا نیمی از پرتوزائیش را از دست بدهد. پس از چهار نیمه عمر سطح پرتوزایی به   مقدار اولیه آن و پس از هشت نیمه عمر به   آن می رسد.

P7 ایزوتوپ های پرتوزای مختلف نیمه عمرهایی دارند که از کسری از ثانیه تا دقیقه‌ها، ساعات یا روزها، حتی تا میلیون ها سال گسترده شده اند. پرتوزایی با گذشت زمان، همانطور که این ایزوتوپ ها به ایزوتوپ های پایدار غیر پرتوزا تلاش می کنند کم می شود.

P8 آهنگ تلاشی یک ایزوتوپ با عکس نیمه عمرش متناسب است. یک نیمه عمر کوتاه به معنای تلاشی سریع است. بنابراین، برای هر نوع پرتوزایی، شدت پرتوزایی بالاتر در یک مقدار ماده داده شده مستلزم کوتاه‌تر بودن نیمه عمر است. 

P9 سه اصل کلی برای مدیریت پسماندهای پرتوزا بکار گرفته می شود:

•    تغلیظ و نگهداری concentrate-and-cantain

•    تضعیف و پراکنش dilute- and disparoe

•    تأخیر و تلاش delay-and-decay

P10 دو تای اول در مورد مدیریت پسماندهای غیر پرتوزا هم به کار می روند. پسماندها یا تغلیظ شده و سپس متروی می شوند، یا (برای مقادیر خیلی کم) تا سطح قابل قبولی تضعیف شده و سپس به محیط زیست باز گردانده می شوند. با این وجود تأخیر و تلاشی منحصر به مدیریت پسماندهای پرتوزاست و به این معنی است که پسماند ذخیره و اجازه داده می شود که پرتوزایی آن از طریق تلاشی طبیعی ایزوتوپ‌های موجود در آن کم شود.

]در چرخه سوخت هسته ای غیرنظامی توجگه اصلی بر پسماندهای سطح بالاست که حاوی محصولات شکافت و عناصر ترا اورانیومی تشکیل شده در قلب راکتور هستند[.

 

P11 پسماند سطح بالا: ممکن است خود سوخت مصرف شده یا پسماند اصلی حاصل از باز پردازش آن باشد. در هر دو حال این حجم متوسطی دارد- در حدود 30-25 تن سوخت مصرف شده یا سه مترمکعب پسماند شیشه ای شده در سال برای یک نمونه راکتور هسته ای بزرگ (1000 MWC، نوع آب سبک). این حجم می تواند به صورت موثر و اقتصادی ایزوله شود. سطح پرتوزایی آن به سرعت کم می شود. به عنوان نمونه، یک مجموعه سوخت راکتور آب سبک تازه تخلیه شده آن قدر پرتوزایی دارد که چند صد کیلو وات گرما می پراکند، اما پس از یک سال این مقدار به 5kw و پس از پنج سال به یک کیلووات می رسد. ظرف مدت 40 سال پرتوزایی آن به حدود یک هزارم مقدار آن هنگام تخلیه می رسد.

P12 اگر سوخت مصرف شده بازفرآوری شود، %3 آن که به صورت پسماند سطح بالا ظاهر می شود، عمدتاً مایع است و حاوی “خاکستر” اورانیوم سوخته شده است. این پسماند که شامل محصولات شکافت به شدت پرتوزا و چند عنصر سنگین با پرتوزایی دراز مدت است، مقدار قابل توجهی گرما تولید می کند و باید خنک شود. این به صورت شیشه بورو سیلیکات  (شبیه به پیرکتن) و به منظور پوشینه‌داری، ذخیره سازی میان مدت، و دفع نهایی در اعماق زمین شیشه ای می شود. این سیاستی است که توسط بریتانیا، فرانسه، آلمان، ژاپن، چین و هند اتخاذ می شود. (بخش های 5-2 و 5-3 را ببینید)

دانلود کامل سوخت هسته ای و فرایندآن